Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods.

Identifieur interne : 000A83 ( Main/Exploration ); précédent : 000A82; suivant : 000A84

Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods.

Auteurs : Shahin S. Ali [États-Unis] ; Jonathan Shao [États-Unis] ; David J. Lary [États-Unis] ; Mary D. Strem [États-Unis] ; Lyndel W. Meinhardt [États-Unis] ; Bryan A. Bailey [États-Unis]

Source :

RBID : pubmed:28261234

Abstract

Phytophthora megakarya (Pmeg) and Phytophthora palmivora (Ppal) cause black pod rot of Theobroma cacao L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a Phytophthora species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds.

DOI: 10.3389/fpls.2017.00169
PubMed: 28261234
PubMed Central: PMC5306292


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">
<i>Phytophthora megakarya</i>
and
<i>P. palmivora</i>
, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods.</title>
<author>
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shao, Jonathan" sort="Shao, Jonathan" uniqKey="Shao J" first="Jonathan" last="Shao">Jonathan Shao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lary, David J" sort="Lary, David J" uniqKey="Lary D" first="David J" last="Lary">David J. Lary</name>
<affiliation wicri:level="2">
<nlm:affiliation>Physics Department, University of Texas at Dallas Richardson, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, University of Texas at Dallas Richardson, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strem, Mary D" sort="Strem, Mary D" uniqKey="Strem M" first="Mary D" last="Strem">Mary D. Strem</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meinhardt, Lyndel W" sort="Meinhardt, Lyndel W" uniqKey="Meinhardt L" first="Lyndel W" last="Meinhardt">Lyndel W. Meinhardt</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28261234</idno>
<idno type="pmid">28261234</idno>
<idno type="doi">10.3389/fpls.2017.00169</idno>
<idno type="pmc">PMC5306292</idno>
<idno type="wicri:Area/Main/Corpus">000A21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A21</idno>
<idno type="wicri:Area/Main/Curation">000A21</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A21</idno>
<idno type="wicri:Area/Main/Exploration">000A21</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">
<i>Phytophthora megakarya</i>
and
<i>P. palmivora</i>
, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods.</title>
<author>
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shao, Jonathan" sort="Shao, Jonathan" uniqKey="Shao J" first="Jonathan" last="Shao">Jonathan Shao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lary, David J" sort="Lary, David J" uniqKey="Lary D" first="David J" last="Lary">David J. Lary</name>
<affiliation wicri:level="2">
<nlm:affiliation>Physics Department, University of Texas at Dallas Richardson, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, University of Texas at Dallas Richardson, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Strem, Mary D" sort="Strem, Mary D" uniqKey="Strem M" first="Mary D" last="Strem">Mary D. Strem</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Meinhardt, Lyndel W" sort="Meinhardt, Lyndel W" uniqKey="Meinhardt L" first="Lyndel W" last="Meinhardt">Lyndel W. Meinhardt</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Phytophthora megakarya</i>
(Pmeg) and
<i>Phytophthora palmivora</i>
(Ppal) cause black pod rot of
<i>Theobroma cacao</i>
L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a
<i>Phytophthora</i>
species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28261234</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2017</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>
<i>Phytophthora megakarya</i>
and
<i>P. palmivora</i>
, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods.</ArticleTitle>
<Pagination>
<MedlinePgn>169</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2017.00169</ELocationID>
<Abstract>
<AbstractText>
<i>Phytophthora megakarya</i>
(Pmeg) and
<i>Phytophthora palmivora</i>
(Ppal) cause black pod rot of
<i>Theobroma cacao</i>
L. (cacao). Of these two clade 4 species, Pmeg is more virulent and is displacing Ppal in many cacao production areas in Africa. Symptoms and species specific sporangia production were compared when the two species were co-inoculated onto pod pieces in staggered 24 h time intervals. Pmeg sporangia were predominantly recovered from pod pieces with unwounded surfaces even when inoculated 24 h after Ppal. On wounded surfaces, sporangia of Ppal were predominantly recovered if the two species were simultaneously applied or Ppal was applied first but not if Pmeg was applied first. Pmeg demonstrated an advantage over Ppal when infecting un-wounded surfaces while Ppal had the advantage when infecting wounded surfaces. RNA-Seq was carried out on RNA isolated from control and Pmeg and Ppal infected pod pieces 3 days post inoculation to assess their abilities to alter/suppress cacao defense. Expression of 4,482 and 5,264 cacao genes was altered after Pmeg and Ppal infection, respectively, with most genes responding to both species. Neural network self-organizing map analyses separated the cacao RNA-Seq gene expression profiles into 24 classes, 6 of which were largely induced in response to infection. Using KEGG analysis, subsets of genes composing interrelated pathways leading to phenylpropanoid biosynthesis, ethylene and jasmonic acid biosynthesis and action, plant defense signal transduction, and endocytosis showed induction in response to infection. A large subset of genes encoding putative Pr-proteins also showed differential expression in response to infection. A subset of 36 cacao genes was used to validate the RNA-Seq expression data and compare infection induced gene expression patterns in leaves and wounded and unwounded pod husks. Expression patterns between RNA-Seq and RT-qPCR were generally reproducible. The level and timing of altered gene expression was influenced by the tissues studied and by wounding. Although, in these susceptible interactions gene expression patterns were similar, some genes did show differential expression in a
<i>Phytophthora</i>
species dependent manner. The biggest difference was the more intense changes in expression in Ppal inoculated wounded pod pieces further demonstrating its rapid progression when penetrating through wounds.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ali</LastName>
<ForeName>Shahin S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lary</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Physics Department, University of Texas at Dallas Richardson, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Strem</LastName>
<ForeName>Mary D</ForeName>
<Initials>MD</Initials>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meinhardt</LastName>
<ForeName>Lyndel W</ForeName>
<Initials>LW</Initials>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bailey</LastName>
<ForeName>Bryan A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Sustainable Perennial Crops Laboratory, United States Department of Agriculture/Agricultural Research Service, Beltsville Agricultural Research Center-West, Plant Sciences Institute Beltsville, MD, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Phytophthora</Keyword>
<Keyword MajorTopicYN="N">RNA-Seq</Keyword>
<Keyword MajorTopicYN="N">black pod rot</Keyword>
<Keyword MajorTopicYN="N">cacao</Keyword>
<Keyword MajorTopicYN="N">plant-pathogen interaction</Keyword>
<Keyword MajorTopicYN="N">self-organizing map</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>01</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28261234</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2017.00169</ArticleId>
<ArticleId IdType="pmc">PMC5306292</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Plant Microbe Interact. 2007 Nov;20(11):1346-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17977146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Sep;154(1):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20592040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):1085-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23584548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jun 08;6:428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26106404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17904410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):7-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22198764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Mar 04;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:431-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 May 17;17:363</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Dec 06;13:204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24314063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Jun 03;14(6):r53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23731509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Mar 1;20(5):537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jul 26;448(7152):497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17625569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Sep;236(3):765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2006 Nov;224(6):1449-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16832690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Apr;21(4):1031-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2011 Feb;43(2):101-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21186351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(7):e1003653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Sep 1;3(5):371-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2015 Dec;169(4):2371-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26482888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):802-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22986789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Oct;48(2):165-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16965554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2017 Feb 10;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28186564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Oct 30;9:512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18973681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1118-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18390593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2007 Oct;100(4):681-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2007 Dec;97(12):1650-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2064-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2014 Sep;15(7):698-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24528440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4088-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7753775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2013 Nov;11(11):800-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24129511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2015 Feb;16(2):204-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25430691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):375-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Nov;32(3):361-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12410814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Nov 15;10:248</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 May 05;6:303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25999969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Nov;228:118-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25438792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Mar;69(4):473-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19083153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Jul 27;12:306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21794127</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Ali, Shahin S" sort="Ali, Shahin S" uniqKey="Ali S" first="Shahin S" last="Ali">Shahin S. Ali</name>
</region>
<name sortKey="Bailey, Bryan A" sort="Bailey, Bryan A" uniqKey="Bailey B" first="Bryan A" last="Bailey">Bryan A. Bailey</name>
<name sortKey="Lary, David J" sort="Lary, David J" uniqKey="Lary D" first="David J" last="Lary">David J. Lary</name>
<name sortKey="Meinhardt, Lyndel W" sort="Meinhardt, Lyndel W" uniqKey="Meinhardt L" first="Lyndel W" last="Meinhardt">Lyndel W. Meinhardt</name>
<name sortKey="Shao, Jonathan" sort="Shao, Jonathan" uniqKey="Shao J" first="Jonathan" last="Shao">Jonathan Shao</name>
<name sortKey="Strem, Mary D" sort="Strem, Mary D" uniqKey="Strem M" first="Mary D" last="Strem">Mary D. Strem</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A83 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A83 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28261234
   |texte=   Phytophthora megakarya and P. palmivora, Causal Agents of Black Pod Rot, Induce Similar Plant Defense Responses Late during Infection of Susceptible Cacao Pods.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28261234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024